

HOMOISOFLAVONOIDS FROM *CAESALPINIA SAPPAN**

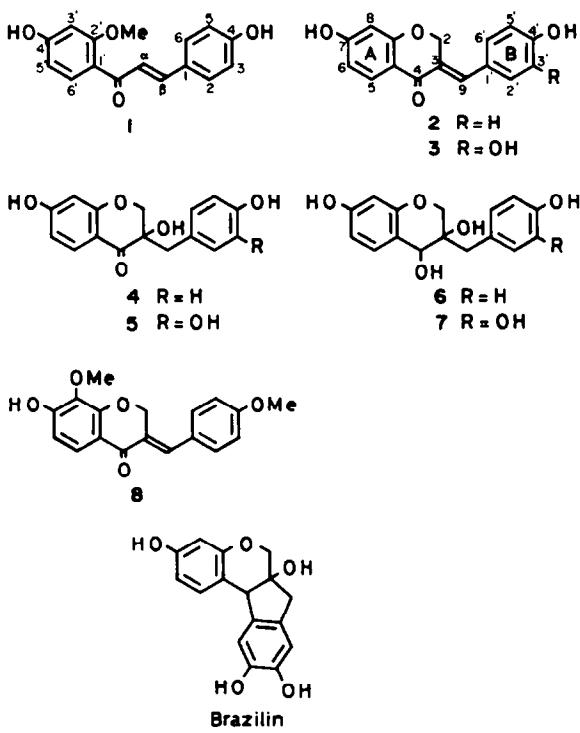
MICHIO NAMIKOSHI, HIROYUKI NAKATA and TAMOTSU SAITO

Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan

(Received 23 October 1986)

Key Word Index—*Caesalpinia sappan*; Leguminosae; heartwood; homoisoflavonoids; flavonoids; brazilin.

Abstract—Three new homoisoflavonoids, 7-hydroxy-3-(4'-hydroxybenzylidene)-chroman-4-one, 3,7-dihydroxy-3-(4'-hydroxybenzyl)-chroman-4-one and 3,4,7-trihydroxy-3-(4'-hydroxybenzyl)-chroman were isolated from the dried heartwood of *Caesalpinia sappan*, together with the known compounds 4,4'-dihydroxy-2'-methoxychalcone, 8-methoxybonducillin, quercetin, rhamnetin and ombuin.


INTRODUCTION

A number of phenolic compounds have been isolated from *Caesalpinia sappan* L. [1-7]. In the course of our studies on homoisoflavonoids and related compounds, we have reported the isolation and structure elucidation of six homoisoflavonoids from the dried heartwood of *C. sappan* [1], which is known as Sappan Lignum among the oriental crude drugs. In the present paper, we report the isolation and structure assignment of three new homoisoflavonoids, 7-hydroxy-3-(4'-hydroxybenzylidene)-chroman-4-one (2), 3,7-dihydroxy-3-(4'-hydroxybenzyl)-chroman-4-one (4) and 3,4,7-trihydroxy-3-(4'-hydroxybenzyl)-chroman (6), and the known compounds 4,4'-dihydroxy-2'-methoxychalcone (1) [8], 8-methoxybonducillin (8) [9], quercetin (9), rhamnetin (10) and ombuin (11) from the same source.

RESULTS AND DISCUSSION

Compound 1 was isolated as yellow needles and its molecular formula $C_{16}H_{14}O_4$ deduced from the high resolution mass spectrum. The physicochemical properties (Experimental) of 1 were identical with those of 4,4'-dihydroxy-2'-methoxychalcone [8].

The molecular formula of compound 2, $C_{16}H_{12}O_4$, was determined from the high resolution mass spectrum. A 1H NMR signal at δ 7.80 (1H, d) was *ortho*-coupled ($J = 8.8$ Hz) to a one-proton doublet of doublets at δ 6.53, which was further *meta*-coupled to a one-proton doublet ($J = 2.2$ Hz) at δ 6.31. These signals could be assigned to the protons at C-5, C-6 and C-8, respectively. The long-range coupled ($J = 1.8$ Hz) signals at δ 7.71 (1H, t) and δ 5.35 (2H, d) were assigned to H-9 and H-2, respectively. These signals, assigned to H-2-H-9, closely resembled those of 3 [1] (summarized in Table 1). The pair of two-proton doublets ($J = 9.0$ Hz) at δ 6.88 and δ 7.25 in the 1H NMR spectrum of 2 showed the presence of a *para*-substituted aromatic ring. An *E*-orientation of the double bond at C-3 (C-9) was indicated by the position of the H-2 and H-9 proton signals at δ 5.35 and δ 7.71, respectively

[10]. Compound 2 is therefore 7-hydroxy-3-(4'-hydroxybenzylidene)-chroman-4-one.

Compound 4 possesses the molecular formula $C_{16}H_{14}O_5$ (high resolution mass spectrum). The 1H NMR signals, assigned to H-2-H-9, of 4 were very similar to those of 5 [1] (summarized in Table 1). The remaining resonances in the spectrum of 4 displayed the signals of typical *para*-substituted aromatic protons, whose pair of two-proton doublets ($J = 8.9$ Hz) at δ 6.76 and δ 7.09 were assignable to H-3',5' and H-2',6' of the B-ring, respectively. Compound 4 is therefore 3,7-dihydroxy-3-(4'-hydroxybenzyl)-chroman-4-one.

The molecular ion peak was not detected in the EI mass

*Part 1 in the series "Homoisoflavonoids and Related Compounds".

Table 1. ^1H NMR data (100 MHz) for compounds 2-7*

Compound (solvent)	H-2	H-4	H-5	H-6	H-8	H-9	H-2'	H-3'	H-5'	H-6'
2 (CD ₃ OD)	5.35(d) <i>J</i> = 1.8	—	7.80(d) 6.53(dd) <i>J</i> = 8.8 <i>J</i> = 2.2, 8.8	6.31(d) <i>J</i> = 2.2	7.71(t) 7.25(d) <i>J</i> = 1.8 <i>J</i> = 9.0 <i>J</i> = 9.0	6.88(d) <i>J</i> = 9.0	6.88(d) <i>J</i> = 9.0	7.25(d) <i>J</i> = 9.0	7.25(d) <i>J</i> = 9.0	
3 (CD ₃ OD)	5.39(d) <i>J</i> = 1.8	—	7.83(d) 6.55(dd) <i>J</i> = 8.9 <i>J</i> = 2.2, 8.9	6.34(d) <i>J</i> = 2.2	7.68(t) <i>J</i> = 1.8	—	—	6.60-7.00(3H, <i>m</i>)	—	
4 (acetone- <i>d</i> ₆)	4.05(d) 4.21(d) <i>J</i> = 11.5	—	7.74(d) 6.63(dd) <i>J</i> = 8.8 <i>J</i> = 2.2, 8.8	6.47(d) <i>J</i> = 2.2	2.90(s) 7.08(d) <i>J</i> = 8.9	6.77(d) <i>J</i> = 8.9	6.77(d) <i>J</i> = 8.9	7.08(d) <i>J</i> = 8.9	7.08(d) <i>J</i> = 8.9	
5 (acetone- <i>d</i> ₆)	4.05(d) 4.23(d) <i>J</i> = 11.5	—	7.73(d) 6.64(dd) <i>J</i> = 8.8 <i>J</i> = 2.2, 8.8	6.48(d) <i>J</i> = 2.2	2.85(s) 6.81(d) <i>J</i> = 2.0	—	6.76(d) <i>J</i> = 8.0	6.56(dd) <i>J</i> = 2.0, 8.0	—	
6 (CD ₃ OD)	3.65(dd) <i>J</i> = 1.3, 10.5 <i>J</i> = 10.5	4.22(d) <i>J</i> = 1.3	7.11(d) 6.43(dd) <i>J</i> = 8.2 <i>J</i> = 2.2, 8.2	6.27(d) <i>J</i> = 2.2	2.66(s) 7.02(d) <i>J</i> = 8.8	6.69(d) <i>J</i> = 8.8	6.69(d) <i>J</i> = 8.8	7.02(d) <i>J</i> = 8.8	—	
7† (CD ₃ OD)	3.67(dd) <i>J</i> = 1.2, 10.6 <i>J</i> = 10.6	4.21(d) <i>J</i> = 1.2	7.09(d) 6.41(dd) <i>J</i> = 8.2 <i>J</i> = 2.3, 8.2	6.26(d) <i>J</i> = 2.3	2.57(d) 6.69(d) <i>J</i> = 2.0	—	6.66(d) <i>J</i> = 8.0	6.50(dd) <i>J</i> = 2.0, 8.0	—	

*Chemical shifts are given in δ (ppm) relative to TMS. Coupling constants are given in Hz.

†This compound was observed at 400 MHz.

spectrum of 6, but a $[\text{M} - \text{H}_2\text{O}]^+$ ion at m/z 270 was observed. A similar phenomenon was observed in the EI mass spectrum 7 [1]. Comparison of the ^1H NMR spectrum of 6 with those of 4 and 7 (summarized in Table 1) revealed the structure of 6 as 3,4,7-trihydroxy-3-(4'-hydroxybenzyl)-chroman.

Compound 8 was obtained as a yellow gum, showing a $[\text{M}]^+$ for $\text{C}_{18}\text{H}_{16}\text{O}_5$ at m/z 312 in the mass spectrum. The physical and spectral properties (Experimental) of 8 were identical with those of 8-methoxyboudicellin [9]. Compound 8 is therefore 7-hydroxy-8-methoxy-3-(4'-methoxybenzylidene)-chroman-4-one.

Compounds 9, 10 and 11 were identical with the authentic specimens of quercetin, rhamnetin and ombuin, respectively.

Compounds 1 and 8-11 have never been isolated from this plant before.

The biogenetic pathway from sappanchalcone (3,4,4'-trihydroxy-2'-methoxychalcone) [3] to brazilin, a well known main component of this plant, via compounds 3, 5 and 7 was confirmed [1, 3, 11]. The compounds reported in this paper were biogenetically synthesized via a similar pathway to these compounds, that is from compound 1 \rightarrow 2 \rightarrow 4 to 6. But compound 6 will not cyclize to form a brazilin type compound, because of the lack of an oxygen-function at C-3' [11].

EXPERIMENTAL

Extraction and isolation. The dried heartwood of *C. sappan* L. (Sappan Lignum) (500 g), purchased in Tokyo, was extracted with MeOH (3 days at room temp. \times 3). The MeOH extract (48.9 g) was repeatedly subjected to CC on silica gel, Sephadex LH-20 or Polyamide as described previously [1]. The minor components reported in this paper were isolated by repeated CC on Sephadex LH-20 (MeOH) and silica gel, and prep. TLC of the remaining fractions after separation of the previously reported compounds. Various ratios of the solvent mixtures

[CHCl₃-MeOH, C₆H₆-Me₂CO, hexane-Me₂CO] were used on a silica gel column and in TLC and afforded the 1 (26 mg), 2 (8 mg), 4 (5 mg), 6 (210 mg), 8 (4 mg), 9 (12 mg), 10 (6 mg) and 11 (5 mg).

The R_f values of the compounds 1-8 are as follows: solvent mixtures (A) CHCl₃-MeOH (9:1), (B) C₆H₆-Me₂CO (4:1), (C) C₆H₆-Me₂CO (7:3), (D) hexane-Me₂CO (3:2), (E) hexane-Me₂CO (1:1); 1 [0.43 (A), 0.26 (B), 0.43 (C), 0.22 (D), 0.44 (E)], 2 (0.42, 0.33, 0.48, 0.27, 0.50), 3 (0.34, 0.16, 0.33, 0.16, 0.36), 4 (0.38, 0.27, 0.43, 0.23, 0.45), 5 (0.28, 0.11, 0.27, 0.14, 0.33), 6 (0.24, 0.12, 0.29, 0.15, 0.34), 7 (0.11, 0.04, 0.11, 0.08, 0.20), 8 (0.79, 0.59, 0.68, 0.50, 0.70).

Compound 1. Yellow needles (CHCl₃), mp 210-212°, UV λ_{MeOH} nm (log ϵ): 349 (3.90), 235 (4.04); EIMS (70 eV) m/z : 270.0865 ([M]⁺; calcd for C₁₆H₁₄O₄: 270.0890) (100%), 269 (22), 255 (32), 253 (16), 242 (17), 164 (53), 151 (83), 147 (37), 137 (25), 121 (28), 120 (17), 119 (20), 108 (18), 107 (34), 91 (18), 65 (23); ¹H NMR (100 MHz in acetone-*d*₆): δ 3.92 (3H, s, OMe), 6.53 (1H, dd, *J* = 2.2, 8.5 Hz, H-5'), 6.60 (1H, d, *J* = 2.2 Hz, H-3'), 6.91 (2H, d, *J* = 8.8 Hz, H-3 and 5), 7.44 (1H, d, *J* = 16.2 Hz, H- α), 7.50-7.68 (4H, m, H- β , 2, 6 and 6'). These data agreed with lit. values [8].

Compound 2. Yellow needles (Me₂CO-hexane), mp 248-249°; UV λ_{MeOH} nm (log ϵ): 369 (4.58), 323 (sh, 4.46), 239 (4.34); EIMS (70 eV) m/z : 268.0731 ([M]⁺; calcd for C₁₆H₁₂O₄: 268.0733) (74%), 267 (34), 151 (38), 138 (51), 137 (100), 132 (64), 131 (89), 103 (31), 77 (56).

Compound 4. $[\alpha]_{\text{D}}^{25} + 11.9^\circ$ (MeOH, *c* 0.21); UV λ_{MeOH} nm (log ϵ): 310 (3.55), 275 (3.92), 227 (4.14); EIMS (70 eV) m/z : 286.0847 ([M]⁺; calcd for C₁₆H₁₄O₅: 286.0841) (16%), 179 (100), 151 (22), 137 (80), 123 (23), 121 (23), 108 (61), 107 (98), 105 (30), 95 (28), 77 (73).

Compound 6. Colourless needles (Me₂CO-hexane), mp 182-183°; $[\alpha]_{\text{D}}^{25} + 54.5^\circ$ (MeOH, *c* 0.77); UV λ_{MeOH} nm (log ϵ): 284 (3.74), 278 (3.80), 223 (4.37); EIMS (70 eV) m/z : 270 ([M - H₂O]⁺, 7%), 164 (100), 163 (40), 147 (12), 102 (98), 77 (42).

Compound 8. UV λ_{EtOH} nm (log ϵ): 348 (4.23), 328 (sh, 4.20), (EtOH-NaOAc): 388 (4.22), 318 (4.15), 270 (3.89),

(EtOH-NaOAc-H₃BO₃): 348 (4.22), 328 (sh, 4.20); EIIMS (70 eV) *m/z*: 312 ([M]⁺, 50%), 167 (56), 146 (100), 138 (37), 131 (31), 123 (17), 115 (11), 103 (43), 95 (16), 77 (23); ¹H NMR (100 MHz in acetone-*d*₆): δ 3.84 (3H, s, OMe), 3.89 (3H, s, OMe), 5.49 (2H, *d*, *J* = 1.8 Hz, H-2), 6.66 (1H, *d*, *J* = 8.8 Hz, H-6), 7.08 (2H, *d*, *J* = 9.0 Hz, H-3' and 5'), 7.45 (2H, *d*, *J* = 9.0 Hz, H-2' and 6'), 7.63 (1H, *d*, *J* = 8.8 Hz, H-5), 7.73 (1H, *t*, *J* = 1.8 Hz, H-9). These data agreed with lit. values [9].

Acknowledgements—The authors are indebted to Professor S. Okuda and Dr. J. Furukawa, Institute of Applied Microbiology (University of Tokyo), for measurements of the 400 MHz ¹H NMR spectra.

REFERENCES

1. Saitoh, T., Sakashita, S., Nakata, H., Shimokawa, T., Kinjo, J., Yamahara, J., Yamasaki, M. and Nohara, T. (1986) *Chem. Pharm. Bull.* **34**, 2506.
2. Craig, T. C., Naik, A. R., Pratt, R. and Johnson, E. (1965) *J. Org. Chem.* **30**, 1573.
3. Nagai, M., Nagumo, S., Eguchi, I., Lee, S. and Suzuki, T. (1984) *Yakugaku Zasshi* **104**, 935.
4. Shimokawa, T., Kinjo, J., Yamahara, J., Yamasaki, M. and Nohara, T. (1985) *Chem. Pharm. Bull.* **33**, 3545.
5. Fuke, C., Yamahara, J., Shimokawa, T., Kinjo, J., Tomimatsu, T. and Nohara, T. (1985) *Phytochemistry* **24**, 2403.
6. Nagai, M., Nagumo, S., Lee, S., Eguchi, I. and Kawai, K. (1986) *Chem. Pharm. Bull.* **34**, 1.
7. Nagai, M. and Nagumo, S. (1986) *Heterocycles* **24**, 601.
8. Carlson, R. E. and Dolphin, D. H. (1982) *Phytochemistry* **21**, 1733.
9. McPherson, D. D., Cordell, G. A., Soejarto, D. D., Pezzuto, J. M. and Fong, H. H. S. (1983) *Phytochemistry* **22**, 2835.
10. Boehler, F. and Tamm, C. (1967) *Tetrahedron Letters* 3479.
11. Heller, W. and Tamm, C. (1981) *Fortschr. Chem. Org. Naturst.* **40**, 105.